
Object-Oriented Programming

 3 - 1

THE OBJECT MODEL

●● Programming Language Generations

●● What is an Object?

●● Programming Paradigms

●● Elements of the Object Model

●● Relationships Among Objects

●● Classification

Objectives of Module 3

● Present and discuss the concept of the Object Model and its evolution.

● Present and discuss the elements of the Object Model.

● Present and discuss the idea that proper classification is very important to an object-

oriented design and how and why it is difficult to obtain a proper classification.

Readings on the Object Model

● The Object Model was first introduced by Jones (1979) and Williams (1986). See:

Jones, A. "The Object Model: A Conceptual Tool for Structuring Software" in

Operating Systems, ed. R. Bayer et al., New York, NY: Springer-Verlag, 1979

Williams, L. The Object Model in Software Engineering, Boulder, CO: Software

Engineering Research, 1986

● Alan Kay's Ph.D. thesis (1969) established the direction for much of the work in object-

oriented programming that followed. See:

Kay, A. The Reactive Engine, Salt Lake City, Utah: The University of Utah,

Department of Computer Science, 1969

Object-Oriented Programming

 3 - 2

PROGRAMMING LANGUAGE
GENERATIONS

1950 1960 1970 1980

1954-1958: 1st Generation

1959-1961: 2nd Generation

1962-1970: 3rd Generation

Ada, C++

Gen Sample Languages Language Features

 1 FORTRAN I Mathematical expressions

 2 FORTRAN II, COBOL Subroutines, data handling

 3 Pascal, Simula Blocks, typing, classes

●● New Focus: programming in the large

●● High-order languages dominate

●● Programming Language Generations

● What Is an Object ?

● Programming Paradigms

● Elements of the Object Model

● Relationships Among Objects

● Classification

Object-Oriented Programming

 3 - 3

PROGRAMMING LANGUAGES

Evolution of Abstraction

Gen Kind of Abstraction

 1 Mathematics

 2 Algorithm and procedures

 3 Data and data models of real-world entities

Beyond Objects and object models of real-world entities

Distance
from the

Detail of
the Machine

Time and Language Evolution

1
2

3

Beyond 3

There is a growing need to increase the level of abstraction when designing

software systems, especially as the complexity of these systems increases.

In Object-Oriented Programming, the level of abstraction is at the level of the object.

The Object encapsulates data specific to an object or class of objects (the

member data, which represents the attributes of the class of objects) and

functions which operate on that data.

Different Object-Oriented Programming Languages (OOPL's) have different ways of

defining classes, but the inclusion of member data and member functions in a

class is a common feature of most OOPL's, particularly Ada and C++.

Object-Oriented Programming

 3 - 4

PROGRAMMING LANGUAGES

Topologies of Languages by Generation

1st Generation 2nd Generation

3rd Generation and Beyond

Key to Symbols

Data

Subprogram

Subprogram containing
data and other subprograms

Package containing local
data and subprograms,

exporting only desired
subprograms and data while
hiding others

Object-Oriented Programming

 3 - 5

PROGRAMMING LANGUAGES

A Shift in Focus

Given that:

Verbs => Procedures and Functions

Nouns => Data

Then:

Function-oriented Program = Collection of Verbs Supported by Nouns

Object-oriented Program = Collection of Nouns Supported by Verbs

Which is a More Realistic

Model of the World?

●● A collection of functions being performed?

●● A collection of objects interacting with each other?

Data becomes the basis of the modular breakdown of the code, as opposed to

functions. Functions are grouped with the data they operate on.

Data

Function_1

Function_2

Object --
an encapsulated

collection of data
and the
associated
functions

Object-Oriented Programming

 3 - 6

WHAT IS AN OBJECT?

An object is an integral entity which can:

●● change state

●● behave in certain discernable ways

●● be manipulated by various forms of stimuli

●● stand in relation to other objects

Objects :

●● exist, occupy space, and assume a state

●● possess attributes

●● exhibit behaviors

Informal, Intuitive Definition

● Programming Language Generations

●● What Is an Object?

● Programming Paradigms

● Elements of the Object Model

● Relationships Among Objects

● Classification

Object-Oriented Programming

 3 - 7

WHAT IS AN OBJECT?

Object Concept - objects have a permanence and identity apart from any

operation upon them

Formal definition of an object from the perspective of OOD:

Object - an entity which has state, behavior, and identity; the structure

and behavior of similar objects are defined in their common class; the
terms instance and object are interchangeable

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 77

Formal Definition

Informal definition of an object from the perspective of human cognition:

Object - any of the following:

● a tangible and/or visible thing

● something that may be apprehended intellectually

● something toward which thought or action is directed

 -- Grady Booch, Object-Oriented Design with Applications, 1991, Page 76

Three key aspects of an object:

● state (sometimes realized as attributes)

● identity

● behaviors

Object-Oriented Programming

 3 - 8

WHAT IS AN OBJECT?

●● Attributes, such as time, beauty, or color

●● Emotions, such as love or anger

●● Entities which are normally objects but are, instead, thought of as

attributes of objects when a particular problem space is considered

Temperature

Temperature
Sensor

Oven_Temp : TEMPERATURE

 := 350.0; -- degrees F

type SENSOR is record
 Temp : TEMPERATURE;

 Redundancy : MULTIPLEX;
 Location: MEMORY_ADDRESS;
end record;

Oven_Temp : SENSOR := (
 Temp => 350.0, -- degrees F

 Redundancy => TRIPLEX,
 Location => 16#1a0#);

Temperature
as an object

Temperature
as an attribute

of an object

Examples of Non-Objects

Object-Oriented Programming

 3 - 9

WHAT IS AN OBJECT?

●● Real-world, tangible objects with boundaries that may or may not be

clearly defined

●● Inventions of the design process which collaborate with other objects

to provide some higher-level behavior

●● Intangible events or processes with well-defined conceptual

boundaries

Tangible

Intangible

Clearly-defined boundaries

No clearly-defined boundaries

Clearly-defined boundaries
No clearly-defined boundaries

Events or processes

Inventions of the design process

Kinds of Software Objects

Objects in a software system come from two key sources:

● discovery, where the software objects map to real-world objects

discovered during the analysis of the problem

● invention, where the software objects have been invented by the

designers

Object-Oriented Programming

 3 - 10

WHAT IS AN OBJECT?

Formal definition of an object from the perspective of OOD:

Object - an entity which has state, behavior, and identity; the structure
and behavior of similar objects are defined in their common class; the

terms instance and object are interchangeable

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 77

This definition of an object refers to three key features:

●● State

●● Behavior

●● Identity

These key features will be discussed in detail.

Dissecting an Object

Consider a simple variable in a program, such as

I : Integer range 1..20 := 12;

State --

The value of the variable (in this case, 12). Note that one of the

attributes of this variable is that it can only take on values from 1

to 20.

Behavior --

A variable like this is passive, meaning that it cannot take on an

activity of its own volition, but there is a set of operations (+, -, /,

*, etc.) that may operate upon it.

Identity --

I is the name, or identity, of this variable. I is a member of the class

Integer, although its value range is restricted.

Object-Oriented Programming

 3 - 11

WHAT IS AN OBJECT?

State

State of an object - encompasses all of the (usually static) properties of the

object plus the current (usually dynamic) values of each of these
properties

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 78

Property or attribute of an object - a part of the state of the object which is

an inherent or distinctive characteristic, trait, quality, or feature that
contributes to making an object uniquely that object

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 78

All properties have some value:

● a scalar quantity

● a vector quantity or an object

Because every object has state, every object takes up some amount of space,

be it physical space or computer memory.

In OOPL's, member data, which define the attributes of a class of objects, are

defined in a part of the specification of the object's class. For example,

class Complex {

protected:

 float real_part;

 float imag_part;

public:

 Complex (float rp=0.0, float ip=0.0); // constructor

 Complex &operator+ (Complex &arg); // a+b

 Complex &operator= (Complex &arg); // a=b

 float real(void); // f = a.real();

 float imag(void); // f = a.imag();

};

Object-Oriented Programming

 3 - 12

WHAT IS AN OBJECT?

State of an Object - Example

Temperature

Sensor

type TEMPERATURE_SENSOR is record

 Temp : TEMPERATURE; -- degrees F
 Redundancy : MULTIPLEX;

 Location: MEMORY_ADDRESS;
end record;
Oven_Temp : TEMPERATURE_SENSOR := (

 Temp => 350.0, -- degrees F
 Redundancy => TRIPLEX,
 Location => 16#1a0#);

Objects of class TEMPERATURE_SENSOR, such as Oven_Temp, have three

attributes:

●● Temp, a dynamic attribute which changes with time

●● Redundancy, a static attribute (the number of sensed points) which is

fixed when the object is created

●● Location, a static attribute which is fixed when the object is created

Object-Oriented Programming

 3 - 13

WHAT IS AN OBJECT?

Behavior

Behavior of an object - how an object acts and reacts, in terms of its state
changes and message passing

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80

Operation -- some action that one object performs upon another in order
to elicit a reaction

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80

The terms operation and message are interchangeable.

Method -- operation that a client may perform upon an object

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 80

The terms method and member function are interchangeable.

In OOPL's, member functions, which define those operations that may be invoked

on an object by its clients, are defined in a part of the specification of the

object's class. For example,

class Complex {

protected:

 float real_part;

 float imag_part;

public:

 Complex (float rp=0.0, float ip=0.0); // constructor

 Complex &operator+ (Complex &arg); // a+b

 Complex &operator= (Complex &arg); // a=b

 float real(void); // f = a.real();

 float imag(void); // f = a.imag();

};

Object-Oriented Programming

 3 - 14

WHAT IS AN OBJECT?

Behavior of an Object - Example
package Temperature_Sensor is

 type STATUS is (NOT_OK, OK);

 type TEMPERATURE is FLOAT range -400.0 .. 3_000.0; -- deg F

 type MULTIPLEX is (SIMPLEX, DUPLEX, TRIPLEX);

 type MEMORY_ADDRESS is INTEGER range 0 .. 1_024;

 type OBJECT is record

 Temp : TEMPERATURE;

 Redundancy : MULTIPLEX;

 Location : MEMORY_ADDRESS;

 end record;

 function Current_Temperature (Item : in OBJECT)

 return TEMPERATURE;

 function Reliability (Item : in OBJECT)

 return STATUS;

end Temperature_Sensor;

Using the TEMPERATURE_SENSOR Package

with Temperature_Sensor;

with Console;

procedure Show_Oven_Temperature is

 Oven_Temp : Temperature_Sensor.OBJECT :=

 (Temp => 0.0, -- initial dummy condition

 Redundancy => Temperature_Sensor.TRIPLEX,

 Location => 16#1a0#);

begin -- Show_Oven_Temperature

 -- Display the current temperature

 Console.Put("Current oven temperature is ");

 Console.Put (FLOAT(Temperature_Sensor.Current_Temperature

 (Oven_Temp)), 4, 1, 0);

 Console.New_Line;

end Show_Oven_Temperature;

Object-Oriented Programming

 3 - 15

WHAT IS AN OBJECT?

Behavior - Kinds of Operations

●● Modifier - an operation that alters the state of an object, such as a

get_with_update or put operation

●● Selector - an operation that accesses the state of an object, but does

not alter the state, such as a get operation

●● Iterator - an operation that permits all parts of an object to be accessed

in some well-defined order, such as movement through a linked list

●● Constructor - an operation that creates and object and/or initializes its

state

●● Destructor - an operation that frees the state of an object and/or

destroys the object itself

Object-Oriented Programming

 3 - 16

WHAT IS AN OBJECT?

Behavior - The Protocol of an Object

Protocol - all of the methods and free subprograms [procedures or

functions that serve as nonprimitive operations upon an object or objects

of the same or different classes] associated with a particular object

-- Grady Booch, Object-Oriented Design with Applications, 1991, Pp 82-83

The protocol of an object defines the envelope of that object's allowable

behavior, comprising the entire external view of the object (both static

and dynamic).

In OOPL's, the protocol of an object is evident in its class definition.

class Complex {

protected:

 float real_part;

 float imag_part;

public:

 Complex (float rp=0.0, float ip=0.0); // constructor

 Complex &operator+ (Complex &arg); // a+b

 Complex &operator= (Complex &arg); // a=b

 float real(void); // f = a.real();

 float imag(void); // f = a.imag();

};

Object-Oriented Programming

 3 - 17

WHAT IS AN OBJECT?

Behavior - Objects as Machines

The Finite State Machine provides a good model for some objects.

Objects may be either active or passive:

●● Active Object - an object that encompasses its own thread of

control

●● Passive Object - an object that does not encompass its thread of
control

Since an object has state, the order in which operations are invoked is

important. This gives rise to the view of an object as an independent

machine. For some objects, time ordering of their operations is so

important that the object's behavior can be formally characterized in

terms of a finite state machine.

Active objects are autonomous, exhibiting a behavior without being operated

upon by another object.

Passive objects can only undergo a state change when explicitly acted upon.

Some OOPL's, like Ada, have constructs to support the definition of active

objects. In Ada, these are called tasks, and they begin execution as soon

as their declarations are encountered.

Object-Oriented Programming

 3 - 18

WHAT IS AN OBJECT?

Identity

Identity - that property of an object which distinguishes it from all other

objects

-- Khoshafian and Copeland, "Object Identity," SIGPLAN Notices, Volume
21, Issues 11, November 1986, Page 406

I : Integer range 1..20 := 12;

identity of the object

The failure to distinguish between the name of an object and the object itself is

the source of many errors in object-oriented programming.

Lifetime of an Object - the time span extending from the time an object is first

created (and consumes space) until that space is reclaimed

Note that an object can continue to exist even if all references to it are lost.

Object-Oriented Programming

 3 - 19

WHAT IS AN OBJECT?

Identity - Object Assignment

Object Assignment differs from copying in that in object assignment, the

identity of an object is duplicated by assignment to a second name. Two
names then refer to the same object.

Conventional Assignment refers to the act of copying the state information
of one object into another object. The state of two objects is now the

same, but the state of one object may be changed without affecting the
other.

Identity - Equality

Like assignment, Equality can have two meanings:

●● two names are equal if they designate the same object

●● two names are equal if they designate different objects but their
state is identical

Equality can be confusing. One meaning refers to two entities addressing the

same space, the other refers to the contents of the space addressed.

Address Memory Contents

1000 12

Ptr_1

Ptr_2

100C 12

Ptr_1 = Object(1000) because they address the same space

Object(1000) = Object(100C) because they contain the same value

Object-Oriented Programming

 3 - 20

WHAT IS AN OBJECT?

Class - a set of objects that share a common structure and a common

behavior

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page 93

A class represents only an abstraction, whereas an object, an instance

of a class, is a concrete entity that exists in time and space.

What is a Class?

What is NOT a Class?

An object is not a class, but a class may be an object (to be

discussed in the OOD course).

Objects that share no common structure and behavior

cannot be grouped in a class because, by definition,

they are unrelated, except by their general nature as

objects.

Object-Oriented Programming

 3 - 21

WHAT IS AN OBJECT?

The Class as a Contractual Binding

The class captures the structure and behavior common to all related

objects, serving as a binding contract between an abstraction and all of
its clients.

Strongly typed programming languages can detect violations of the

contract that is a class during compilation.

Two views of a class:

●● Interface - the outside view of a class, emphasizing the abstraction
while hiding the structure and details of how its behavior works

●● Implementation - the inside view of a class, which details the
internal structure of a class and the details of how its behavior
works

In Ada, we have the specification and the body. The specification defines the

interface and the body defines the implementation. All four Ada program

units (the subprogram, the package, the generic, and the task) have

separate forms for their specifications and bodies.

In C++, we have the declaration and the definition. The declaration defines the

interface and the definition defines the implementation. Definition

information may be mixed in with the declaration, however.

Object-Oriented Programming

 3 - 22

WHAT IS AN OBJECT?

The Interface to a Class

The interface to a class consists of:

●● primarily, the declarations of all operations applicable to instances of

the class; these operations may be invoked by clients of the class

objects

●● the declaration of other classes

●● constants

●● variables

●● exceptions

The last four are included if they are needed to complete the abstraction.

Object-Oriented Programming

 3 - 23

WHAT IS AN OBJECT?

The Interface to a Class, Continued

The interface to a class can be divided into three parts:

●● Public - a declaration that is visible to all clients of the objects of a

class

●● Protected - a declaration that is not visible to any other classes

except the subclasses of the class

●● Private - a declaration that is not visible to any other classes

C++ does the best job in allowing a developer to make explicit

distinctions among these different parts of a class interface. Ada

permits declarations to be public or private, but not protected.

An example of a C++ class with protected, private, and public members:

class Intermixed {

protected:

 float x;

private:

 float y;

public:

 void set_x(float); // set value of X

 void set_y(float);

 void print(void); // print out X and Y

};

Object-Oriented Programming

 3 - 24

WHAT IS AN OBJECT?

The State of an Object

●● Defined in private part of class declaration

●● Constant and variable declarations

Why is the State of an Object

NOT in the Implementation?

●● Needed by the compiler

●● Technology not sufficiently advanced

The State of an Object

The state of an object is usually represented as constant and variable declarations

placed in the private part of a class interface. This encapsulates the

representation common to the objects of a class, and changes to this

representation do not have a functional affect on the clients.

Why is the State of an Object

NOT in the Implementation?

Placing state information in the implementation of a class would completely hide it from

the clients, but, with today's technology, placing state information in the

implementation rather than the private interface of a class would require either

object-oriented hardware or very sophisticated compiler technology. Compiler

technology can solve this problem, but the compiler must be able to discern

information about the size of the object of the class.

Object-Oriented Programming

 3 - 25

PROGRAMMING PARADIGMS
Most programmers work in one language and use only one programming style.

They program in a paradigm enforced by the language they use.
Frequently, they have not been exposed to alternate ways of thinking about

a problem, and hence have difficulty in seeing the advantage of choosing a
style more appropriate to the problem at hand.

-- Jenkins and Glasgow, "Programming Styles in Nail," IEEE Software, Volume
3, Number 1, Page 48 (Jan 1986)

Main Kinds of Programming Paradigms

Paradigm Kinds of Abstractions Employed

Procedure-oriented Algorithms

Object-oriented Classes and objects

Logic-oriented Goals, often expressed in a predicate calculus

Rule-oriented If-then rules

Constraint-oriented Invariant relationships

No Single Paradigm is Best for All Kinds of
Applications!

Each style is based on its own conceptual framework.

Examples:

● Rule-oriented programming is best for the design of a knowledge base.

● Procedure-oriented programming is best for the solution of sets of

simultaneous equations.

● Object-oriented programming is best for industrial-strength software in

which complexity is the dominant issue.

●● Programming Language Generations

● What Is an Object ?

● Programming Paradigms

● Elements of the Object Model

● Relationships Among Objects

● Classification

Object-Oriented Programming

 3 - 26

ELEMENTS OF THE OBJECT MODEL

The Object Model is the conceptual framework for all things object-oriented.

Major Elements

✓✓ Abstraction

✓✓ Encapsulation

✓✓ Modularity

✓✓ Hierarchy

Minor Elements

✓✓ Typing

✓✓ Concurrency

✓✓ Persistence

● Programming Language Generations

● What Is an Object ?

● Programming Paradigms

●● Elements of the Object Model

●● Relationships Among Objects

● Classification

The Object Model is the conceptual framework for all things object-oriented.

Without this conceptual framework, you may program in a language like

C++ or Ada, but your design will "smell" like FORTRAN, Pascal, or C.

Many of the benefits of the language and its potential will be lost.

Object-Oriented Programming

 3 - 27

ELEMENTS OF THE OBJECT MODEL

Abstraction

Abstraction - what distinguishes one kind of object from another kind

of object

Behavior
of an Object

Implementation
of an Object

Abstraction

Barrier

An abstraction denotes the essential characteristics of an object that

distinguish it from all other kinds of objects and thus provide crisply

defined conceptual boundaries, relative to the perspective of the viewer.

-- Grady Booch, Object-Oriented Design with Applications,

1991, Page 39

Object-Oriented Programming

 3 - 28

ELEMENTS OF THE OBJECT MODEL

Abstraction and the

Problem Domain

Deciding on the correct set of abstractions for a
given problem domain is the central problem in
object-oriented design.

"Determining the correct set of abstractions"

 is covered in detail in the next Module.

Object-Oriented Programming

 3 - 29

ELEMENTS OF THE OBJECT MODEL

Kinds of Abstraction

Entity abstraction - an object that represents a useful model of an entity
in the problem domain

Action abstraction - an object that provides a generalized set of
operations, all of which perform the same kind of function

Virtual machine abstraction - an object that groups together operations
that are all used by some superior level of control or operations that

all use some junior-level set of operations

Coincidental abstraction - an object that packages a set of operations
that have no relation to each other

Entity --

class Sensor {

private:

 int data;

public:

 int read(void);

};

Object-Oriented Programming

 3 - 30

ELEMENTS OF THE OBJECT MODEL

Entity Abstractions

Client - an object that uses the resources of another object

Behavior of an object - the operations that a client may perform upon

the object (the protocol of the object) and the operations that the
object may perform upon other objects

All entity abstractions may have two kinds of properties:

●● Static - fixed for the life of the object; example: a file's name or
identity

●● Dynamic - can vary during the life of the object; example: a file's
size

Object-Oriented Programming

 3 - 31

ELEMENTS OF THE OBJECT MODEL

Encapsulation

Encapsulation, or Information Hiding - the process of hiding all the
details of an object that do not contribute to its essential
characteristics

-- Grady Booch, Object-Oriented Design with Applications, 1991,

Page 46

Abstraction and Encapsulation are complementary concepts:

● Abstraction hides the implementation of an object from most clients,

focusing on the outside view of an object

● Encapsulation prevents clients from seeing the inside view of an object,

where the behavior of the object is implemented and the state information

on the object is retained (in many cases)

Object-Oriented Programming

 3 - 32

ELEMENTS OF THE OBJECT MODEL

Modularity

Modularity - the property of a system that has been decomposed into a

set of cohesive and loosely coupled modules

-- Grady Booch, Object-Oriented Design with Applications, 1991,
Page 52

Classes and objects are implemented in modules to produce the

architecture of a system.

There are two aspects to a module:

● The interface to a module, called a specification in Ada

● The implementation of a module, called a body in Ada

Object-Oriented Programming

 3 - 33

ELEMENTS OF THE OBJECT MODEL

Issues Concerning Modularity

Technical --

●● Class and object selection - modules are the containers of the

classes and objects

●● Logically-related classes and objects grouping

●● Visibility of modules to other modules

●● Isolation of system dependencies

●● Reuse of modules across applications

●● Limits placed on the size of object code segments, particularly

when a compiler places one and only one module into one and

only one object code segment

Non-Technical --

●● Work assignments may be given on a module basis

●● Modules usually serve as configuration items

●● Some modules may require more security

Object-Oriented Programming

 3 - 34

ELEMENTS OF THE OBJECT MODEL

Modules and Classes/Objects

Two entirely independent design decisions:

●● Finding the right classes and objects

●● Organizing the classes and objects into separate modules

The selection of classes and objects is a part of the logical design.

The identification of modules is a part of the physical design.

Logical and physical design decisions must take place iteratively; one cannot be

completed before the other.

Object-Oriented Programming

 3 - 35

ELEMENTS OF THE OBJECT MODEL

Hierarchy

Hierarchy - the ranking or ordering of abstractions

-- Grady Booch, Object-Oriented Design with Applications, 1991,
Page 54

The two most important hierarchies in a complex system:

●● the class structure (the "kind of" hierarchy)

●● the object structure (the "part of" hierarchy)

Object-Oriented Programming

 3 - 36

ELEMENTS OF THE OBJECT MODEL

Classes

Objects

Class Structure = "kind of" hierarchy
 -- inheritance --

Object Structure = "part of" hierarchy
 -- aggregation --

Two Key Hierarchies

This picture, also known as a canonical representation of a class-based

system, shows the objects in a system and their relationships as

containers of subordinate objects. The classes in the system and their

relationships to other classes (inheriting relationships) are also shown.

Finally, a pairing of objects with their classes is shown.

Each object belongs to one and only one class at a given time, although

subclasses may exist (and an object may change classes from time to

time).

Each class is realized by zero or more objects.

Object-Oriented Programming

 3 - 37

ELEMENTS OF THE OBJECT MODEL

Typing

Typing - the enforcement of the class of an object, such that objects

of different types may not be interchanged, or at the most, they may
be interchanged only in very restricted ways

-- Grady Booch, Object-Oriented Design with Applications, 1991,
Page 59

A type is very similar to a class. Typing allows abstractions to be expressed in such

a way that the programming language used to implement the design can be

used to enforce the design decisions.

Languages may be strongly typed, weakly typed, or untyped. All three kinds of

languages may be object-oriented or object-based.

In a strongly typed language, all expressions are guaranteed to be type-consistent.

Object-Oriented Programming

 3 - 38

ELEMENTS OF THE OBJECT MODEL

Some Benefits of Strong Typing

●● Runtime crashes of programs reduced

●● Early error detection

●● Type declarations help to document programs:

type VELOCITY is new FLOAT range 0.0 .. 1_000.0; -- MPH

X : VELOCITY;

Y : FLOAT;

●● Code efficiency may be improved

● With strong type checking, many problems which could cause runtime

crashes of programs will be caught at compile time. For example,

calling a subroutine with two integer parameters when it required three

integer parameters or calling a subroutine with an integer and a string

when it required an integer and a character can be caught at compile

time.

● Early error detection afforded by strong type checking can reduce the

development time, cost, and effort. The earlier an error is caught, the

better.

● Type declarations help to document programs. The declaration of X

below is much better than the declaration of Y:

X : VELOCITY;

Y : FLOAT;

● Many compilers can generate more efficient object code if types are

declared. In the following example, a byte may be used instead of a

full integer:

type CHAR_COUNTER is range 0 .. 128;

Object-Oriented Programming

 3 - 39

ELEMENTS OF THE OBJECT MODEL

Static Typing and Dynamic Binding

Static Typing, Static Binding, or Early Binding - the types of variables
are fixed at compile time

Dynamic Binding or Late Binding - the types of variables are not known

until runtime

Combinations of strong and weak typing with static and dynamic binding may be

supported in various languages in various ways:

● Ada supports strong typing and static binding

● C++ supports strong typing and static or dynamic binding

● Smalltalk has no typing but supports dynamic binding

Object-Oriented Programming

 3 - 40

ELEMENTS OF THE OBJECT MODEL

Polymorphism and Typing

Polymorphism - the concept in type theory in which a single name (such

as a variable declaration) may denote objects of many different
classes that are related by some common superclass

Monomorphism is the opposite of polymorphism, so a monomorphic

object may only respond to the set of operations associated with its
own class.

A polymorphic object may respond to the set of operations associated with the

superclass and also the set of operations associated with its own class.

Ada supports only monomorphism while C++ supports both monomorphism and

polymorphism. Polymorphism exists when the features of inheritance and

dynamic binding interact with each other. Languages which are both

strongly typed and statically bound, such as Ada, cannot support

polymorphism.

Object-Oriented Programming

 3 - 41

ELEMENTS OF THE OBJECT MODEL

Concurrency

Concurrency - the property that distinguishes an active object from one
that is not active

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page
66

An object is an excellent candidate for a concurrent entity because:

●● it implicitly defines a unit of distribution and activity

●● it explicitly defines a communication interface

A single process, also known as a thread of control, is the root from which

independent dynamic action occurs within a system. Every program has at

least one thread of control, but a concurrent system may have many threads

of control, some transitory and some lasting the lifetime of the system.

Ada supports the declaration of concurrent objects, using its task program unit.

C++ does not support concurrent objects directly, but it can by using the

UNIX fork system call.

Object-Oriented Programming

 3 - 42

ELEMENTS OF THE OBJECT MODEL

Tasks as Concurrent Objects

In Ada, the Ada runtime system implements the tasking model. This

model can be implemented on one or many CPUs.

Task

-- Sample Ada Task Specification

task Event_Process is

 entry Trigger (Input : in KIND);

end Event_Process;

-- Creating two Event_Process tasks

Processor1, Processor2 : Event_Process;

Entry Point

Object-Oriented Programming

 3 - 43

ELEMENTS OF THE OBJECT MODEL

Persistence

Persistence - the property of an object through which its existence

transcends time (i.e., the object continues to exist after its creator
ceases to exist) and/or space (i.e., the object's location moves from the
address space in which it was created)

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page

70

An object in software takes up some amount of space and exists for a

particular amount of time. Both its state and class must persist.

The spectrum of object persistence includes:

● Intermediate results in expression evaluation

● Local variables created during the execution of subprograms

● Global variables

● Heap items that exist outside the scope of their creation

● Data that exists between executions of a program

● Data that outlives the program

Object-Oriented Programming

 3 - 44

RELATIONSHIPS AMONG OBJECTS

An object of and by itself is usually uninteresting. However, a system of

objects, wherein the objects collaborate with one another to define the

behavior of the system, is intensely interesting.

Two kinds of object hierarchies are extensively employed in OOD:

●● Using relationships, where one object employs the resources of
another

●● Containing relationships, where one object contains one or more

other objects

● Programming Language Generations

● What Is an Object ?

● Programming Paradigms

●● Elements of the Object Model

●● Relationships Among Objects

●● Classification

Object-Oriented Programming

 3 - 45

RELATIONSHIPS AMONG OBJECTS

Using Relationships

Three roles:

●● Actor - operates upon other objects; an active object

●● Server - is only operated upon by other objects; a passive object

●● Agent - can do both

Given a collection of objects involved in using relationships, each object

may play one of three roles:

● Actor - an object that can operate upon other objects but that is

never operated upon by other objects; an active object

● Server - an object that never operates upon other objects but is

only operated upon by other objects; a passive object

● Agent - an object that can both operate upon other objects and be

operated upon by other objects; an agent is usually created to do

some work on behalf of an actor or another agent

Whenever one object passes a message to another with which it has a

using relationship, the two objects must be synchronized. In a

single thread of control, a subprogram call is adequate for

synchronization. With multiple threads of control, a more complex

method of synchronization must be devised in order to deal with the

problems of mutual exclusion.

Object-Oriented Programming

 3 - 46

RELATIONSHIPS AMONG OBJECTS

Using Relationships, Continued

The need for synchronization in an environment involving multiple

threads of control leads to another way to classify kinds of objects:

●● Sequential object - a passive object whose semantics are guaranteed

only in the presence of a single thread of control

●● Blocking object - a passive object whose semantics are guaranteed in

the presence of multiple threads of control

●● Concurrent object - an active object whose semantics are guaranteed
in the presence of multiple threads of control

Object-Oriented Programming

 3 - 47

RELATIONSHIPS AMONG OBJECTS

Containing Relationships

In a containing relationship, an object may encapsulate one or more other

objects.

Advantages:

●● Reduce the number of objects

Disadvantages:

●● Sometimes leads to undesirable tighter coupling

In a containing relationship, an object may encapsulate one or more other

objects. Some real-world object relationships are clearly containing

relationships, such as the automobile engine which contains pistons,

spark plugs, etc.

Containing an object rather than using an object is sometimes better because

containing reduces the number of objects that must be visible at the

level of the enclosing object.

Using an object is sometimes better than containing an object because

containing an object leads to undesirable tighter coupling among objects

in some cases.

Intelligent engineering decisions require careful weighing of these two factors.

Object-Oriented Programming

 3 - 48

CLASSIFICATION

●● What is Classification?

●● Classification and OOD

●● Why is Classification So Hard?

●● Approaches to Classification

●● Domain Analysis

● Programming Language Generations

● What Is an Object ?

● Programming Paradigms

●● Elements of the Object Model

●● Relationships Among Objects

●● Classification

Object-Oriented Programming

 3 - 49

CLASSIFICATION

Classification - the means whereby we order knowledge

Recognizing the "sameness" among things

No single approach

What is Classification?

In OOD, recognizing the sameness among things allows us to expose the

commonality within key abstractions and mechanisms and eventually

leads to simpler designs.

However, there is no simple approach to the problem of identifying classes

and objects. The selection of classes and objects for an OOD is a

compromise shaped by many competing factors.

This module focuses on heuristics useful for identifying the classes and

objects relevant to a particular problem.

Object-Oriented Programming

 3 - 50

CLASSIFICATION

The identification of classes and objects is the hardest
part of OOD.

The identification of classes and objects involves:

●● discovery, through which we recognize the key abstractions and
mechanisms that form the vocabulary of our problem domain

●● invention, through which we devise generalized abstractions and new

mechanisms that regulate how objects should collaborate

Classification and OOD

During classification, we group entities that have a common structure or

exhibit a common behavior.

Classification is highly dependent upon the reason for the classification,

and different observers naturally tend to classify the same thing

differently.

The best classifications result when an incremental and iterative process is

applied. The quality of a classification can only be meaningfully

evaluated at later stages in the design, once clients have been built

which use the abstractions.

Object-Oriented Programming

 3 - 51

CLASSIFICATION

●● There is no such thing as a "perfect" classification, although some

classifications are better than others.

●● Any classification is relative to the perspective of the observer doing

the classification.

●● Intelligent classification requires a tremendous amount of creative

insight.

Why is a LASER beam like a goldfish?

Because neither one can whistle.

How is a speck of dust like a thought?

Both can be conceived of.
Creative insight
or idiocy?

Why is Classification so Hard?

Object-Oriented Programming

 3 - 52

CLASSIFICATION

●● Classical
categorization

●● Conceptual clustering

●● Prototype theory

Approaches to Classification

Object-Oriented Programming

 3 - 53

CLASSIFICATION

Classical Categorization

Classical Categorization - all entities that have a given property or set of
properties in common form a category; such properties are necessary and
sufficient to define the category

-- Lakoff, G. Women, Fire, and Dangerous Things: What Categories Reveal About

the Mind, 1987, The University of Chicago Press, Page 161

Related properties are therefore the criteria for sameness among objects

in the Classical Categorization approach. One can divide objects

into disjoint sets depending on the presence or absence of a

particular property. Properties to be considered are domain-specific.

Marvin Minsky has suggested that "the most useful sets of properties are

those whose members do not interact too much. This explains the

universal popularity of that particular combination of properties: size,

color, shape, and substance."

-- Minsky, M. The Society of Mind, 1986, Simon and Schuster,

New York, Page 199

Object-Oriented Programming

 3 - 54

CLASSIFICATION

Conceptual Clustering

Conceptual Clustering - a modern variation on the classical approach in

which classes (clusters of entities) are generated by formulating
conceptual descriptions of these classes and then classifying the
entities according to the descriptions

Conceptual clustering is a probabilistic clustering of objects.

Object-Oriented Programming

 3 - 55

CLASSIFICATION

Prototype Theory

Prototype Theory - a class of objects is represented by a prototypical

object

Prototype Theory - based on work in the field of cognitive psychology, a

class of objects is represented by a prototypical object, and an object is

considered to be a member of this class if and only if it resembles this

prototype in some significant ways

Prototype Theory is often applied when classical categorization and

conceptual clustering fail. For instance, try to identify entities which fall

into a class called "game" by classical categorization or conceptual

clustering.

Object-Oriented Programming

 3 - 56

CLASSIFICATION

Classification and OOD Revisited

An approach proposed by Grady Booch:

1. Identify classes and objects according to the properties relevant to
the application domain.

2. If this fails, cluster objects by concepts.

3. If either (1) or (2) fail, classify by association, through which clusters
of objects are defined according to how closely each resembles some
prototypical object.

These three approaches to classification provide the theoretical

foundation of object-oriented analysis, domain analysis, and

other methods applied to identify classes and objects in an

object-oriented design.

Object-Oriented Programming

 3 - 57

CLASSIFICATION

Sources of Classes and Objects

Proposed by Shlaer and Mellor:

●● Tangible things, such as cars, telemetry data, and sensors

●● Roles, such as mother, teacher, and politician

●● Events, such as landing, interrupt, and request

●● Interactions, such as loan, meeting, and intersection

Proposed by Ross (from the perspective of data modeling):

●● People - humans who carry out some function

●● Places - areas set aside for people or things

●● Things - tangible physical objects or groups of objects

●● Organizations - collections of people, resources, facilities, and

capabilities that have a defined mission

●● Concepts - principles or ideas not tangible used to track activities

and/or communications

●● Events - things that happen

Object-Oriented Programming

 3 - 58

CLASSIFICATION

Sources, Continued

Proposed by Coad and Yourdon:

●● Structure - "kind of" and "part of" relationships

●● Other systems - external systems with which the application interacts

●● Devices - devices with which the application interacts

●● Events remembered - a historical event that must be recorded

●● Roles played - the different roles users play in interacting with the

application

●● Locations - physical locations, offices, and sites important to the

application

●● Organizational units - groups to which users belong

Object-Oriented Programming

 3 - 59

CLASSIFICATION

Domain Analysis - the process of identifying the classes and objects

that are common to all applications within a given domain

Contrast Domain Analysis to Object-Oriented Analysis, which focuses on
one problem at a time.

Domain Analysis

Domain Analysis is useful for pointing you to the key abstractions that have

proven useful in other related systems, giving the designer ideas for the

abstractions pertinent in the system under design. Domain Analysis works

well because there are very few truly unique kinds of software systems.

Object-Oriented Programming

 3 - 60

CLASSIFICATION

Suggested Steps in Domain Analysis

●● Construct a generic model -- consult with domain experts

●● Examine existing systems

●● Identify similarities and differences between the systems

●● Refine the model

● Construct a generic model of the domain by consulting with domain

experts [a domain expert is simply a user or a person intimately

familiar with the elements of a particular problem].

● Examine existing systems within the domain and represent this

understanding in a common format.

● Identify similarities and differences between the systems by consulting

with domain experts.

● Refine the generic model to accommodate existing systems.

